Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccine ; 2023 Jun 13.
Article in English | MEDLINE | ID: covidwho-20240172

ABSTRACT

The immune response to COVID-19 booster vaccinations during pregnancy for mothers and their newborns and the functional response of vaccine-induced antibodies against Omicron variants are not well characterized. We conducted a prospective, multicenter cohort study of participants vaccinated during pregnancy with primary or booster mRNA COVID-19 vaccines from July 2021 to January 2022 at 9 academic sites. We determined SARS-CoV-2 binding and live virus and pseudovirus neutralizing antibody (nAb) titers pre- and post-vaccination, and at delivery for both maternal and infant participants. Immune responses to ancestral and Omicron BA.1 SARS-CoV-2 strains were compared between primary and booster vaccine recipients in maternal sera at delivery and in cord blood, after adjusting for days since last vaccination. A total of 240 participants received either Pfizer or Moderna mRNA vaccine during pregnancy (primary 2-dose series: 167; booster dose: 73). Booster vaccination resulted in significantly higher binding and nAb titers, including to the Omicron BA.1 variant, in maternal serum at delivery and in cord blood compared to a primary 2-dose series (range 0.44-0.88 log10 higher, p < 0.0001 for all comparisons). Live virus nAb to Omicron BA.1 were present at delivery in 9 % (GMT ID50 12.7) of Pfizer and 22 % (GMT ID50 14.7) of Moderna primary series recipients, and in 73 % (GMT ID50 60.2) of mRNA boosted participants (p < 0.0001), although titers were significantly lower than to the D614G strain. Transplacental antibody transfer was efficient for all regimens with median transfer ratio range: 1.55-1.77 for IgG, 1.00-1.78 for live virus nAb and 1.79-2.36 for pseudovirus nAb. COVID-19 mRNA vaccination during pregnancy elicited robust immune responses in mothers and efficient transplacental antibody transfer to the newborn. A booster dose during pregnancy significantly increased maternal and cord blood binding and neutralizing antibody levels, including against Omicron BA.1. Findings support the use of a booster dose of COVID-19 vaccine during pregnancy.

2.
J Med Virol ; 95(3): e28673, 2023 03.
Article in English | MEDLINE | ID: covidwho-2267686

ABSTRACT

Broadly neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are sought to curb coronavirus disease 2019 (COVID-19) infections. Here we produced and characterized a set of mouse monoclonal antibodies (mAbs) specific for the ancestral SARS-CoV-2 receptor binding domain (RBD). Two of them, 17A7 and 17B10, were highly potent in microneutralization assay with 50% inhibitory concentration (IC50 ) ≤135 ng/mL against infectious SARS-CoV-2 variants, including G614, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Kappa, Lambda, B.1.1.298, B.1.222, B.1.5, and R.1. Both mAbs (especially 17A7) also exhibited strong in vivo efficacy in protecting K18-hACE2 transgenic mice from the lethal infection with G614, Alpha, Beta, Gamma, and Delta viruses. Structural analysis indicated that 17A7 and 17B10 target the tip of the receptor binding motif in the RBD-up conformation. A third RBD-reactive mAb (3A6) although escaped by Beta and Gamma, was highly effective in cross-neutralizing Delta and Omicron BA.1 variants in vitro and in vivo. In competition experiments, antibodies targeting epitopes similar to these 3 mAbs were rarely enriched in human COVID-19 convalescent sera or postvaccination sera. These results are helpful to inform new antibody/vaccine design and these mAbs can be useful tools for characterizing SARS-CoV-2 variants and elicited antibody responses.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Animals , Mice , Humans , SARS-CoV-2/genetics , COVID-19 Serotherapy , Mice, Transgenic , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral , Antibodies, Neutralizing , Neutralization Tests
3.
iScience ; 25(12): 105507, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2095533

ABSTRACT

Here we interrogate the factors responsible for SARS-CoV-2 breakthrough infections in a K18-hACE2 transgenic mouse model. We show that Delta and the closely related Kappa variant cause viral pneumonia and severe lung lesions in K18-hACE2 mice. Human COVID-19 mRNA post-vaccination sera after the 2nd dose are significantly less efficient in neutralizing Delta/Kappa than early 614G virus in vitro and in vivo. By 5 months post-vaccination, ≥50% of donors lack detectable neutralizing antibodies against Delta and Kappa and all mice receiving 5-month post-vaccination sera die after the lethal challenges. Although a 3rd vaccine dose can boost antibody neutralization against Delta in vitro and in vivo, the mean log neutralization titers against the latest Omicron subvariants are 1/3-1/2 of those against the original 614D virus. Our results suggest that enhanced virulence, greater immune evasion, and waning of vaccine-elicited protection account for SARS-CoV-2 variants caused breakthrough infections.

SELECTION OF CITATIONS
SEARCH DETAIL